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“The” ν Standard Model

• 3 light (mi <1 eV) Majorana Neutrinos: ⇒ only 2 δm2

• Only Active flavors (no steriles): e, µ, τ

• Unitary Mixing Matrix:
3 angles (θ12, θ23, θ13), 1 Dirac phase (δ), 2 Majorana phases (α2,α3)

|νe, νµ, ντ〉Tflavor = Uαi |ν1, ν2, ν3〉Tmass
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Atmos. L/E µ→ τ Atmos. L/E µ↔ e Solar L/E e→ µ, τ 0νββ decay
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Mixing Matrix:
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Solar Sector: {12}
|Uαj|2
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Reactor/Accelerator Sector: {13}
CPT ⇒ invariant δ ↔ −δ
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δm2
sol = +7.6× 10−5 eV 2

|δm2
atm| = 2.4× 10−3 eV 2

|δm2
atm| ≈ 30 ∗ |δm2

sol|
√

δm2
atm = 0.05 eV <

∑
mνi < 0.5 eV = 10−6 ∗me

∑
mνi =

f1 ∼ cos2 θ" ≈ 68%

f2 ∼ sin2 θ" ≈ 32%
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REFERENCES 9

parameter best fit 2σ 3σ

∆m2
21 [10−5eV2] 7.65+0.23

−0.20 7.25–8.11 7.05–8.34

|∆m2
31| [10−3eV2] 2.40+0.12

−0.11 2.18–2.64 2.07–2.75

sin2 θ12 0.304+0.022
−0.016 0.27–0.35 0.25–0.37

sin2 θ23 0.50+0.07
−0.06 0.39–0.63 0.36–0.67

sin2 θ13 0.01+0.016
−0.011 ≤ 0.040 ≤ 0.056

Table 1. Best-fit values with 1σ errors, and 2σ and 3σ intervals (1 d.o.f.) for
the three–flavour neutrino oscillation parameters from global data including solar,
atmospheric, reactor (KamLAND and CHOOZ) and accelerator (K2K and MINOS)
experiments.
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Mass Spectrum:

• Quasi-Degenerate ?

• Hierarchical ?

• Normal or Inverted ?

Mixings:

• Deviations from UTri−Bi−Max

sin2 θ13, (sin2 θ23 − 1/2), (sin2 θ12 − 1/3)

• Relationship between these deviations and

VCKM − 1

if any ?

• Magnitude and sign of CPV:

∝ sin θ13 sin δ
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Neutrino

eg: Sum rules

3

and we have absorbed the Yukawa coupling con-
stants by rescaling the VEV’s. This mass matrix
Mν is form diagonalizable, i.e. the orthogonal
matrix that diagonalizes it does not depend on
the eigenvalues. Its diagonal form is,

V T
ν MνVν = diag(u + 3ξ0, u, −u + 3ξ0)

v2
u

Mx
, (5)

where the matrix Vν is the tri-bimaximal mixing
matrix, Vν = UTBM.

Due to the Z12 symmetry, the mass hierarchy
arises dynamically without invoking an additional
U(1) symmetry. The Z12 symmetry also forbids
Higgsino-mediated proton decays in SUSY ver-
sion of the model. Due to the (d)T transformation
property of the matter fields, the b-quark mass
can be generated only when the (d)T symmetry
is broken, which naturally explains the hierarchy
between mb and mt. The Z12 × Z ′

12 symmetry,
to a very high order, also forbids operators that
lead to nucleon decays. In principle, a symmetry
smaller than Z12×Z ′

12 would suffice in getting re-
alistic masses and mixing pattern; however, more
operators will be allowed and the model would
not be as predictive. The Georgi-Jarlskog rela-
tions for three generations are obtained. This
inevitably requires non-vanishing mixing in the
charged lepton sector, leading to corrections to
the tri-bimaximal mixing pattern. The model
predicts non-vanishing θ13, which is related to the
Cabibbo angle as,

θ13 ∼ θc/3
√

2 . (6)

Numerically, this is close to sin θ13 ∼ 0.05 which
may be probed by the Daya Bay reactor experi-
ment. In addition, it gives rise to a sum rule,

tan2 θ" % tan2 θ",TBM −
1

2
θc cos δ , (7)

which is a consequence of the Georgi-Jarlskog re-
lations in the quark sector (with δ being the Dirac
CP phase in the lepton sector).2 This deviation
could account for the difference between the ex-
perimental best fit value for the solar mixing an-
gle and the value predicted by the tri-bimaximal
mixing matrix.

2Such relation for the solar mixing angle is quite generic
and was also found in a model based on the Pati-Salam
group [13].

Since the three absolute neutrino mass eigen-
values are determined by only two parameters,
i.e. the VEVs u0 and ξ0, there is a sum rule that
relates the three light masses,

m1 − m3 = 2m2 . (8)

More generally, the three absolute masses can be
complex,

m1 = u0 + 3ξ0e
iθ , (9)

m2 = u0 , (10)

m3 = −u0 + 3ξ0e
iθ (11)

with u0 and ξ0 being real. It then follows the sum
rule,

∆m2
" = −9ξ2

0 +
1

2
∆m2

atm . (12)

Given that ∆m2
" > 0 is required in order to have

matter effects in solar neutrino oscillation, it im-
mediately follows from the above sum rule that
the normal hierarchy pattern with ∆m2

atm > 0 is
predicted.3

2.2. Comments on Leptogenesis

Since the exact tri-bimaximal neutrino mixing
pattern predicts θ13 = 0, one question that arises
is whether leptogenesis is possible. (For a review
on leptogenesis, see e.g. Ref. [15].) It was pointed
out [16] that for models that predict exact TBM
pattern for neutrino mixing from an underlying
family symmetry without any tuning, leptogene-
sis vanishes. This is true even when the flavor ef-
fects are included, due to the fact that there is no
right-handed mixing in models with exact TBM
neutrino mixing [16]. Sufficient amount of lep-
togenesis can be generated once corrections due
to higher dimensional operators to the exact tri-
bimaximal mixing pattern are included.

In an S3 model [17] with Type-II seesaw mecha-
nism in which the tri-bimaximal neutrino mixing
is accommodated, non-vanishing leptogenesis can
be generated and its value is related to one of the
Majorana phase.4

3See, also Ref. [14] for a more general discussion on mass
ordering.
4In minimal left-right model with spontaneous CP vio-
lation, all leptonic CP violations, including those in lep-
tongenesis and neutrino oscillation, are due to a single
phase [18].
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Sine/Signs

• |Ue3|2: sin2 θ13

• Hierarchy: sign(δm2
31 or δm2

32)

• CPV: sin δ

• Maximal Mixing: sin2 θ23 = 1
2

• Quadrant of δ: cos δ = ±
√

1− sin2 δ

• Unitarity: lite sterile ν’s

• Majorana v Dirac

• Absolute mass scale: mHeavy and mLite

• New Interactions and Surprises
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Unitarity Triangle:

U∗
µ1Ue1 + U∗
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µ3Ue3 = 0
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Unitarity Triangle:
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J = s12c12s23c23s13c2
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Unitarity Triangle:

U∗
µ1Ue1 + U∗

µ2Ue2 + U∗
µ3Ue3 = 0

|J | = 2×Area

J = s12c12s23c23s13c2
13 sin δ

ω = δ or 2π − δ
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BRIEF ARTICLE

THE AUTHOR

when sin(aL)/(aL) ≈ 1
Neutrino Physics disparately needs to go beyond Megawatt traditional neutrino beams

and Megaton water Cerenkov detectors: Neutrino Factory is an excellent possibility.
For large sin2 2θ13 (≥ 0.003-0.01 say) the low energy option could provide precision

measurements of the mixings to give meaningful tests to various sum rules coming from
models and also explore the possibility of new physics as sub-leading effects.

For smaller values of sin2 2θ13 the higher energy option provides unpresident sensitivity
to small values sin2 2θ13 and has the capability to untangle neutrino mixings from other
new physics.
∼ 1√
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P (ν̄e → ν̄e) = 1− cos4 θ13 sin2 2θ12 sin2 ∆21

− sin2 2θ13(cos2 θ12 sin2 ∆31 + sin2 θ12 sin2 ∆32)

P (ν̄e → ν̄e) ≈ 1− sin2 2θ13 sin2

(
δm2

eeL

4E

)
−O(∆2

21)

δm2
ee = cos2 θ12|δm2

31| + sin2 θ12|δm2
32|
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T.L. (Saclay) - NO-VE 2006 -

One nuclear plant & two detectors

Nuclear reactor
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#  Isotropic  "e  flux (uranium & plutonium fission fragments)

#  Detection tag :  "e + p ! e+ + n,  <E>~ 4 MeV,  Threshold ~1.8 MeV

" Disappearance  experiment:
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Figure 18: sin2(2θ13) sensitivity limit for the detectors installation scheduled scenario

There are a number of important observations which can be gleaned from Figure 21. First
of all, assume that Double Chooz starts as planned (solid Double Chooz curves). Then it will
quickly exceed the sin2 2θ13 discovery reach of MINOS and CNGS, especially after the near detector
is online (left panel). It will be the most sensitive experiment until at least 2011 and its sin2 2θ13

discovery potential is remarkable. In some scenarios, like inverted mass hierarchy and specific values
of δCP, the reactor measurement would have the best discovery potential. Note, that even the far
detector of Double Chooz alone would improve the current bounds on sin2 2θ13 considerably down
to 0.04 after 4 years and 0.03 after 10 years at the 90% confidence level. The information gained
by Double Chooz can also be used for a fine-tuning of the running strategy of second generation
superbeams with anti-neutrinos. If a finite value of sin2 2θ13 were established at Double Chooz, the
superbeam experiments could possibly avoid the time consuming (due to lower cross sections) anti-
neutrino running and gain more statistics with neutrinos. The breaking of parameter correlations
and degeneracies could in this case be achieved by the synergy with the Double Chooz experiment.

The Chooz reactor complex even allows for a very interesting upgrade, called Triple Chooz [42].
There exists another underground cavern at roughly the same distance from the reactor cores as
the Double Chooz far detector. A 200 t detector could be constructed there without requiring
significant civil engineering efforts. This upgrade would in principle be equivalent to the Reactor-
II setup described in Reference [3]. Figure 21 shows that it could play a leading role, since its
sensitivity is unrivaled by any of the first generation beam experiments for the next decade and
even the discovery potential is excellent and covers more than 1/2 of the region superbeams can
access. In the case of a value of sin2 2θ13 not too far below the current CHOOZ bound, this might
even lead to the possibility to restrict the CP parameter space at superbeams for large enough
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and related processes:

CP

νµ → νe ⇐⇒ ν̄µ → ν̄e

T $ CPT across diagonals $ T

νe → νµ ⇐⇒ ν̄e → ν̄µ

CP

CPT across diagonals:

• First Row: Superbeams where νe contamination ∼1 %

• Second Row: ν-Factory or β-Beams, no beam contamination

Even in matter, a vestige of CPT exists:
Instead of switch matter to anti-matter, switch neutrino hierarchy !!!
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At CHOOZ limit expect 12 !e signal events and 42 background events 
with 3.25x1020 protons. 

Use sidebands to study predicted far detector backgrounds. 
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νµ → νeuse unitarity to eliminate U∗
µ1Ue1 term:
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µ3e
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P (νµ → νe) = |2U∗
µ3Ue3 sin∆31e

−i∆32 + 2U∗
µ2Ue2 sin∆21|2

Atmospheric δm2 Solar δm2

2U∗
µ3Ue3 = sin θ23 sin 2θ13e−iδ 2U∗

µ2Ue2 ≈ cos θ23 sin 2θ12
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Pµ→e =
∣∣∣

∑
j U∗µj Ueje

−im2
jL/2E
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Elimate U∗µ1Ue1

using unitarity of U.
Use ∆ij = δm2

ijL/4E = 1.27δm2
ijL/E

Pµ→e =
∣∣ 2U∗µ3Ue3 sin∆31e−i∆32 + 2U∗µ2Ue2 sin∆21

∣∣2
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U∗µ3Ue3 = s23s13c13e∓iδ for ν and ν̄:
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Interference term different for ν and ν̄: CP violation !!!
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Vacu
um LBL:

Pµ→e ≈ |
√

Patme−i(∆32±δ) +
√

Psol |2

0 when ∆31 = π/2

0 in vacuum

a = GF Ne/
√

2 = (4000 km)−1, ∆ij = |δm2
ij|L/4E

and ± = sign(δm2
31)

⇑
⇑

2θ13
θcrit

∼ (aL)θ13

⇓
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∼ ∆31 cot ∆31
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2
√

PatmPsol cos(∆32 ± δ) = 2
√

PatmPsol cos∆32 cos δ (9)

∓2
√

PatmPsol sin ∆32 sin δ (10)

∆ij = δm2
ijL/4E

cos(∆32 ± δ) = cos ∆32 cos δ ∓ sin ∆32 sin δ (11)

CPC only CPV

P = Psol
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2 , the peak in the
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The strategy: off-axis NuMI beam

! Fermilab – Ash River

! 14 mrad off-axis

! 810 km baseline

    

E! !
0.43" m#

1" " 2$ 2

NOvA

π
0 suppression
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For LARGE δm2

31

〈P (νµ → νe)〉 =
1
2

sin2 θ23 sin2 2θ13−
1
2
J sin∆21 + cos2 θ23 sin2 2θ12∆2

12

where ∆21 = δm2
21L/4E

and J = sin 2θ12 sin 2θ23 sin 2θ13 cos θ13sin δ

At δ = 0 or π

〈P (νµ → νe)〉 = 1
2 sin2 θ23 sin2 2θ13 + cos2 θ23 sin2 2θ12∆2

12 ≈ 0.5%

〈P (νµ → νe)〉T2K ≈ 0.5%

0.5% νe in beam
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for Inverted Hierarchy δ → π − δ

at Vac. Osc. Max.

P (νµ → νe) + P (ν̄µ → ν̄e) ≈ 2 sin2 θ23 sin2 2θ13 + 2P!

in P + P̄ the matter effects approx. cancel
and CP effects approx. cancel.
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(off-axis)
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Underground Lab.

DUSEL

MiniBooNE

SciBooNE

MINERvA

MINOS (on-axis)

1300 km

735 km

Powerful Beam

(Project X)

Huge Detector

(LAr or/and Water)

= Proton Decay Detector



Beyond the First Oscillation Maximum:

Broadband Beam: Same L, Lower E Fermilab to DUSEL

Narrow Band Beam: Same E, Longer L T2KK
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31)

⇑
⇑

2θ13
θcrit

∼ (aL)θ13

⇓
⇔

∼ ∆31 cot ∆31
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Beyond the First Oscillation Maximum:

Broadband Beam: Same L, Lower E Fermilab to DUSEL

Narrow Band Beam: Same E, Longer L T2KK

In VACUUM the SAME but NOT in MATTER

sin2 2θ13 = 0.04

L=1200km E=0.6 GeV
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Narrow Band Beam: Same E, Longer L T2KK

In VACUUM the SAME but NOT in MATTER
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vacuum ⇐
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Sensitivities for Water Cherenkov Detector :
Scenario 1 “Detector Module” = 100 KT

The 5 Curves correspond to the five 2 year intervals for the total 10 

year period.

First curve is discovery potential after 2 years of running, second 

curve is discovery potential after 4 years of running etc.



Neutrino Factory:



IDS-NF baseline: accelerator 
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where
√

Patm = sin θ23 sin 2θ13
sin(∆31∓aL)
(∆31∓aL) ∆31

and
√

Psol = cos θ13 cos θ23 sin 2θ12
sin(aL)
(aL) ∆21
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depends on θ13

amplification or suppression
by matter

independent of θ13

≈ independent of
matter effect

– Typeset by FoilTEX – 19

depends on θ13

amplification or suppression
by matter

independent of θ13

≈ independent of
matter effect

Event rate: E(E/L)2

– Typeset by FoilTEX – 19

depends on θ13

amplification or suppression
by matter (E)

independent of θ13

≈ independent of
matter effect

Event rate: E(E/L)2
Thus Both Matter Effect

and Event Rate depend on E,
at same E/L
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depends on θ13

amplification or suppression
by matter (E)

independent of θ13

≈ independent of
matter effect

L/E ≥ significant fraction of 500 km/GeV

Event rate: E(E/L)2
Thus Both Matter Effect

and Event Rate depend on E,
at same E/L
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νµ → νe

ν̄µ → ν̄e

νe → νµ

P (νe → νµ, δm2
31, δ) (4)

≈ P (ν̄µ → ν̄e,−δm2
31,π − δ) (5)

Suppression ≥ Enhancement
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when sin(aL)/(aL) ≈ 1
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Mass Hierarchy: – sign of δm2
31

Matter Effects
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Leptonic CP and T Violation in Oscillations

CP
νµ ↔ νe ⇐⇒ ν̄µ ↔ ν̄e Super-Beams

T $ $ T

νe ↔ νµ ⇐⇒ ν̄e ↔ ν̄µ Nu-Factory
CP

CP Violation in Neutrino Oscillations

is related to Leptogensis
and hence Baryogenesis.
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inverted

normal

vacuum νµ → νe

ν̄µ → ν̄e

νe → νµ

P (νe → νµ, δm2
31, δ) (4)

≈ P (ν̄µ → ν̄e,−δm2
31,π − δ) (5)

Suppression ≥ Enhancement
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NF: νe →νµ (golden channel) optimisation

 Magic baseline (7500 km) good degeneracy solver
 Best sensitivity to CP requires baseline ~4000 km
 Stored muon energy: 25 GeV



Comparison:



Comparison:



Neutrino Factory &
Non-Standard Interactions:

(NSI)

eg  Z’ at LHC
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f

Non-Standard Interaction

f

f

New Physics

f

If new physics scale ~  1(10) TeV

Naive Estimation

Non-Standard neutrino Interaction

Wolfenstein ’78, Grossman ’95, Berezhiani-Rossi ’02

and many people…
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Probing non-standard neutrino 

interactions with neutrino factories

with

Nei Cipriano Ribeiro*1, Hisakazu Minakata*2, Hiroshi Nunokawa,*1 and

Renata Zukanovich Funchal*3

*1Pontificia Universidade Catolica do Rio de Janeiro, *2TMU, *3Universidade de Sao Paulo

Shoichi Uchinami

Tokyo Metropolitan University
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Shoichi Uchinami

To kyo  Me tr o p o lita n  Un ive r sity
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We concentrated on effects of NSI in ! propagation in matter

Valle, Gago-Guzzo-Nunokawa-Teves-Zukanovich Funchal
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standard case

If we take account of the possible existence of NSI

Confusing!!

our setting 

!ee + !e" !
""

+ !e" !ee + !
"" all != 0
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Solved!!

2 detector setting
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Summary
Neutrino factory with

two detectors at L=3000km and 7000km

1. solves the problem that the presence of 

NSI confuses the precision measurement of 

!13 and "

2. is powerful enough to probe into 

extremely small values of the NSI parameters.
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Resultant Sensitivity

Kopp-Ota-Winter ’08advanced work by

25GeV muon, 4000+7500km, Golden + Disappearance channel

!
"#
$O(10-4 (10-2) ) , !

""
,!
##
$O(10-2)

!e#$O(10-3)

!e"$O(10-4)

(2 %)



Conclusions:
• Neutrino Physics desperately  needs to go beyond Megawatt traditional 

neutrino beams and Megaton water Cerenkov detectors:  Neutrino Factory 
is an excellent possibility.

• For large                                   the low energy option could provide 
precision measurements of the mixings to give meaningful  tests to various 
sum rules coming from models and also explore the possibility of new 
physics as sub-leading effects.

• For smaller values of                  the higher energy option provides 
unprecedented  sensitivity to small values                           and has the 
capability to untangle neutrino mixings from other new physics. (eg NSI Z’).
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Neutrino Physics disparately needs to go beyond Megawatt traditional neutrino beams
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For large sin2 2θ13 (≥ 0.003-0.01 say) the low energy option could provide precision

measurements of the mixings to give meaningful tests to various sum rules coming from
models and also explore the possibility of new physics as sub-leading effects.

For smaller values of sin2 2θ13 the higher energy option provides unpresident sensitivity
to small values sin2 2θ13 and has the capability to untangle neutrino mixings from other
new physics.
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